World Library  

Add to Book Shelf
Flag as Inappropriate
Email this Book

Ring Current Decay Time Model During Geomagnetic Storms: a Simple Analytical Approach : Volume 26, Issue 9 (03/09/2008)

By Monreal MacMahon, R.

Click here to view

Book Id: WPLBN0004001848
Format Type: PDF Article :
File Size: Pages 8
Reproduction Date: 2015

Title: Ring Current Decay Time Model During Geomagnetic Storms: a Simple Analytical Approach : Volume 26, Issue 9 (03/09/2008)  
Author: Monreal MacMahon, R.
Volume: Vol. 26, Issue 9
Language: English
Subject: Science, Annales, Geophysicae
Collections: Periodicals: Journal and Magazine Collection (Contemporary), Copernicus GmbH
Publication Date:
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications


APA MLA Chicago

Macmahon, R. M., & Llop-Romero, C. (2008). Ring Current Decay Time Model During Geomagnetic Storms: a Simple Analytical Approach : Volume 26, Issue 9 (03/09/2008). Retrieved from

Description: University of Magallanes, CEQUA, Space Physics Lab, Casilla 113-D, Punta Arenas, Chile. The ring current growth and decay, characterized by the Dst index, has been studied for thirty years using the Burton et al. (1975) equation. The original formula is based on the restriction of the DPS (Dessler, Parker, and Schoppke) theorem and assuming a constant decay time of particles. The decay time scale is important because the energy injection rate cannot be determined it without the knowledge of this parameter. In a previous work, instead of using a constant value, we introduced the decay time of particles in the energy rate balance equation as a continuous function of the absolute value of the pressure corrected Dst index to avoid the reported discontinuities determining it. Here, based on the DPS restriction, we extend our previous empirical work to obtain analytically the proposed continuous function considering losses due to a global resistive force as a product of viscous-like, and other related dissipation processes. We test our model predicting Dst for a couple of specific storm events and also comparing our results with forecasts of a good reference model appeared in the literature.

Ring current decay time model during geomagnetic storms: a simple analytical approach

Akasofu, S.-I.: Energy coupling between the solar wind and the magnetosphere, Space Sci. Res., 28, 121–190, 1981.; Akasofu, S.-I.: Some critical issues on magnetospheric substorms, Planet. Space Sci., 34, 563–560, 1986.; Akasofu, S.-I. and Chapman, S.: Solar Terrestrial Physics, Clarendon, Oxford, England, 1972.; Burton, R. K., McPherron, R. L., and Russell, C. T.: An empirical relationship between interplanetary conditions and $D_st$, J. Geophys. Res., 80, 4204–4214, 1975.; Daglis, I. A., Thorne, R. M., Baumjohann, W., and Orsini, S.: The terrestrial ring current: Origin, formation, evolution and decay, Rev. Geophys., 37, 407–438, 1999.; Molina, M. I.: Body motion in a resistive medium at temperature T, Rev. Mex. Fis., 48(2), 132–134, 2000.; Daglis, I. A., Kozyra, J. U., Kamide, Y., Vassiliadis, D., Sharma, A. S., Liemohn, M. W., Gonzalez, W. D., and Tsurutani, B. T.: Intense space storms: Critical issues and open disputes, J. Geophys. Res., 108(A5), 1208, doi:10.1029/2002JA009722, 2003.; Dessler, A. J. and Parker, E. N.: Hydromagnetic theory of geomagnetic storms, J. Geophys. Res., 64, 2239–2252, 1959.; Ebihara, Y. and Ejiri, M.: Simulation study on fundamental properties of the storm-time ring current, J. Geophys. Res., 105, 15 843–15 859, 2000.; Feldstein, Y. I., Grafe, A., Pisarskij, V., Yu, V., Prigancová, A., and Surnaruk, P. V.: Magnetic field of the magnetospheric ring current and its dynamics during magnetic storms, J. Atmos. Terr. Phys., 52, 1185–1191, 1990.; Frank, L. A.: On the extraterrestrial ring current during geomagnetic storm, J. Geophys. Res., 72, 3753–3767, 1967.; Gonzalez, W. D., Tsurutani, B. T., Gonzalez, A. L. C., Smith, E. J., Tang, F., and Akasofu, S.-I.: Solar wind-magnetosphere coupling during intense magnetic storms (1978–1979), J. Geophys. Res., 94, 8835–8851, 1989.; Gonzalez, W. D.: Ring current evolution during intense magnetic storm/substorm relationship, Storm/Substorm relationship Workshop, Breckenridge, Colorado, 1993.; Gonzalez, W. D., Joselyn, J. A., Kamide, Y., Kroehl, H. W., Rostoker, G., Tsurutani, B. T., and Vasyliunas, V. W.: What is a geomagnetic storm?, J. Geophys. Res., 99, 5771–5792, 1994.; Klimas, A. J., Vassiliadis, D., and Baker, D. N.: $D_st$ index prediction using data-derived analogues of the magnetospheric dynamics, J. Geophys. Res., 103, 20 435–20 447, 1998.; Maltsev, Y. P.: Points of controversy in the study of magnetic storms, Space Sci. Rev., 110, 227–267, 2004.; Langel, R. A. and Estes, R. H.: Large-scale, near-field magnetic fields from external sources and the corresponding induced internal field, J. Geophys. Res., 90, 2487–2494, 1985.; Mendes Jr., O.: A origem interplanetaria e o desenvolvimento da fase principal das tempestades geomagneticas moderadas (1978–1979), PhD thesis, INPE-5445-TDI/491, Sao Jose dos Campos, Sao Paulo, Brazil, 1992.; Monreal MacMahon, R. and Gonzalez, W. D.: Energetics during the main phase of geomagnetic storms, J. Geophys. Res., 102, 14 199–14 207, 1997.; Monreal MacMahon, R., Llop, C., and Miranda, R.: Ring current decay during northward turnings of the interplanetary magnetic field, Geophys. Res. Abstr., 4, EGS02-A-00577, EGS XXVII General Assembly, Nice, France, 2002.; Murayama, T.: Coupling function between solar wind parameter and geomagnetic indices, Rev. Geophys. Space Phys., 20, 623–629, 1982.; Murray, N., Weingartner, J. C., and Capobianco, C.: On the flux of extrasolar dust in Earth-s atmosphere, Astrophys. J, 600, 804–827, 2004.; O'Brien, T. P. and McPherron, R. L.: An empirical phase space analysis of ring current dynamics: Solar wind control of injection and decay, J. Geophys. Res., 105, 7707–7719, 2000.; O'Brien, T. P. and McPherron, R. L.: Forecasting the ring current index $D_st$ in real time, J. Atmos. Solar Terr. Phys., 62, 1295–1299, 2000.; Perrault, P. and Akasofu, S.-I.: A study of geomagnetic storm, Geophys. J. Roy. Astrom. Soc., 54, 547–573, 1978.; Prigancová, A. and Feldstein, Ya. I.: Magnetospheric storm dynamic


Click To View

Additional Books

  • Fog-induced Variations in Aerosol Optica... (by )
  • Estimation of Photolysis Frequencies fro... (by )
  • First Measurements of Electron Vorticity... (by )
  • The Effect of Coastal Upwelling on the S... (by )
  • Dipole Tilt Effects in Plasma Sheet BY: ... (by )
  • Plasma Flow Channels at the Dawn/Dusk Po... (by )
  • A New Southern High-latitude Index : Vol... (by )
  • Observations of Artificial and Natural O... (by )
  • Pre-monsoon Aerosol Characteristics Over... (by )
  • Global Distributions of Diurnal and Semi... (by )
  • Convective Activities Associated with In... (by )
  • Quasi-linear Dynamics of Weibel Instabil... (by )
Scroll Left
Scroll Right


Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.