World Library  

Add to Book Shelf
Flag as Inappropriate
Email this Book

Gome-2 Total Ozone Columns from Metop-a/Metop-b and Assimilation in the MacC System : Volume 7, Issue 3 (07/03/2014)

By Hao, N.

Click here to view

Book Id: WPLBN0004000133
Format Type: PDF Article :
File Size: Pages 41
Reproduction Date: 2015

Title: Gome-2 Total Ozone Columns from Metop-a/Metop-b and Assimilation in the MacC System : Volume 7, Issue 3 (07/03/2014)  
Author: Hao, N.
Volume: Vol. 7, Issue 3
Language: English
Subject: Science, Atmospheric, Measurement
Collections: Periodicals: Journal and Magazine Collection, Copernicus GmbH
Publication Date:
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications


APA MLA Chicago

Inness, A., Koukouli, M. E., Zimmer, W., Valks, P., Hao, N., Loyola, D. G.,...Zyrichidou, I. (2014). Gome-2 Total Ozone Columns from Metop-a/Metop-b and Assimilation in the MacC System : Volume 7, Issue 3 (07/03/2014). Retrieved from

Description: Institut für Methodik der Fernerkundung (IMF), Deutsches Zentrum für Luft- und Raumfahrt (DLR), Oberpfaffenhofen, Germany. The two Global Ozone Monitoring Instrument (GOME-2) sensors operated in tandem are flying onboard EUMETSAT's MetOp-A and MetOp-B satellites, launched in October 2006 and September 2012 respectively. This paper presents the operational GOME-2/MetOp-A (GOME-2A) and GOME-2/MetOp-B (GOME-2B) total ozone products provided by the EUMETSAT Satellite Application Facility on Ozone and Atmospheric Chemistry Monitoring (O3M-SAF). These products are generated using the latest version of the GOME Data Processor (GDP version 4.7). The enhancements in GDP 4.7, including the application of Brion–Daumont–Malicet ozone absorption cross-sections, are presented here. On a global scale, GOME-2B has the same high accuracy as the corresponding GOME-2A products. There is an excellent agreement between the ozone total columns from the two sensors, with GOME-2B values slightly lower with a mean difference of only 0.55 ± 0.29%. First global validation results for 6 months of GOME-2B total ozone using ground-based measurements show that on average the GOME-2B total ozone data obtained with GDP 4.7 slightly overestimate Dobson observations by about 2.0 ± 1.0% and Brewer observations by about 1.0 ± 0.8%. It is concluded that the total ozone columns (TOCs) provided by GOME-2A and GOME-2B are consistent and may be used simultaneously without introducing trends or other systematic effects. GOME-2A total ozone data have been used operationally in the Copernicus atmospheric service project MACC-II (Monitoring Atmospheric Composition and Climate – Interim Implementation) near-real-time (NRT) system since October 2013. The magnitude of the bias correction needed for assimilating GOME-2A ozone is reduced (to about −6 DU in the global mean) when the GOME-2 ozone retrieval algorithm changed to GDP 4.7.

GOME-2 total ozone columns from MetOp-A/MetOp-B and assimilation in the MACC system

Antón, M., Loyola, D., López, M., Vilaplana, J. M., Bañón, M., Zimmer, W., and Serrano, A.: Comparison of GOME-2/MetOp total ozone data with Brewer spectroradiometer data over the Iberian Peninsula, Ann. Geophys., 27, 1377–1386, doi:10.5194/angeo-27-1377-2009, 2009.; Antón, M., Koukouli, M. E., Kroon, M., McPeters, R. D., Labow, G. J., Balis, D., and Serrano, A.: Global validation of empirically corrected EP-Total Ozone Mapping Spectrometer (TOMS) total ozone columns using Brewer and Dobson ground-based measurements, J. Geophys. Res., 115, D19305, doi:10.1029/2010JD014178, 2010.; Balis, D., Lambert, J.-C., Van Roozendael, M., Loyola, D., Spurr, R., Livschitz, Y., Valks, P., Ruppert, T., Gerard, P., Granville, J., and Amiridis, V.: Ten years of GOME/ERS2 total ozone data-The new GOME data processor(GDP) version 4: 2. Ground-based validation and comparisons with TOMS V7/V8, J. Geophys. Res., 112, D07307, doi:10.1029/2005JD006376, 2007a.; Balis, D., Kroon, M., Koukouli, M. E., Brinksma, E. J., Labow, G., Veefkind, J. P., and McPeters, R. D.: Validation of Ozone Monitoring Instrument total ozone column measurements using Brewer and Dobson spectrophotometer ground-based observations, J. Geophys. Res., 112, D24S46, doi:10.1029/2007JD008796, 2007b.; Balis, D., Koukouli, M., Loyola, D., Valks, P., and Hao, N.: Validation Report of GOME-2 Total Ozone Products (OTO/O3, NTO/O3) Processed with GDP 4.2, SAF/O3M/AUTH/GOME-2VAL/RP/03, 2009.; De Smedt, I., Pinardi, G., Van Roozendael, M., Hao, N., and Valks, P.: O3MSAF ORR Validation Report, SAF/O3M/IASB/VR/HCHO/13, 2013.; Bernhard, G., Evans, R. D., Labow, G. J., and Oltmans, S. J.: Bias in Dobson total ozone measurements at high latitudes due to approximations in calculations of ozone absorption coefficients and air mass, J. Geophys. Res., 110, D10305, doi:10.1029/2004JD005559, 2005.; Bhartia, P. K. and Wellemeyer, C.: TOMS-V8 total O3 algorithm, in: OMI Ozone Product ATBD Volume II, NASA Goddard Space Flight Center, Greenbelt, MD, USA, 2002.; Bhartia, P. K., McPeters, R. D., Mateer, C. L., Flynn, L. E., and Wellemeyer, C.: Algorithm for the estimation of vertical ozone profiles from the backscattered ultraviolet technique, J. Geophys. Res., 101, 18793–18806, 1996.; Bhartia, P. K., McPeters, R. D., Flynn, L. E., Taylor, S., Kramarova, N. A., Frith, S., Fisher, B., and DeLand, M.: Solar Backscatter UV (SBUV) total ozone and profile algorithm, Atmos. Meas. Tech., 6, 2533–2548, doi:10.5194/amt-6-2533-2013, 2013.; Bojkov, R. D., Mateer, C., and Hanson, A.: Comparison of ground-based and total ozone mapping spectrometer measurements used in assessing the performance of the global ozone observing system, J. Geophys. Res., 93, 9525–9533, doi:10.1029/JD093iD08p09525, 1988.; Brion, J., Chakir, A., Charbonnier, J., Daumont, D., Parisse, C., and Malicet, J.: Absorption spectra measurements for the ozone molecule in the 350–830 nm region, J. Atmos. Chem., 30, 291–299, 1998.; Burrows, J., Richter, A., Dehn, A., Deters, B., Himmelmann, S., Voigt, S., and Orphal, J.: Atmospheric remote sensing reference data from GOME: Part 2. Temperature-dependent absorption cross-sections of O3 in the 231–794 nm range, J. Quant. Spectrosc. Ra., 61, 509–517, 1999.; Chance, K. and Kurucz, R. L.: An improved high-resolution solar reference spectrum for earth's atmosphere measurements in the ultraviolet, visible, and near infrared, J. Quant. Spectrosc. Ra., 111, 1289–1295, 2010.; Daum


Click To View

Additional Books

  • Determination of Aerosol Properties from... (by )
  • Multi-wavelength Raman Lidar, Sunphotome... (by )
  • Characterization of Model Errors in the ... (by )
  • On the Determination of Gravity Wave Mom... (by )
  • Max-doas Observations of the Total Atmos... (by )
  • Known and Unknown Unknowns: the Applicat... (by )
  • Real-time Remote Detection and Measureme... (by )
  • Multispectral Information from Tanso-fts... (by )
  • Potential and Limitations of the Max-doa... (by )
  • An Improved Method for Retrieving Nightt... (by )
  • The Feasibility of Water Vapor Sounding ... (by )
  • Broadband Cavity Enhanced Differential O... (by )
Scroll Left
Scroll Right


Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.